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Charge flipping is a method for ab initio determination of an approximate 

electron density from the set of structure-factor amplitudes

� Published by Oszlanyi & Sütö (2004), Acta Cryst A

� Requires only lattice parameters and reflection intensities

� The output is an approximate scattering density of the structure sampled 

on a discrete grid

� No use of symmetry apart from the input intensities

� Related to the LDE (low density elimination) method (Shiono & Woolfson 

(1992), Acta Cryst. A; Takakura et al. (2001), Phys. Rev. Lett.) and the 

“difference map” (Elser (2003), Acta Cryst. A)
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What is charge flipping?What is charge flipping?
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Advantages and disadvantagesAdvantages and disadvantages

+ Minimum assumptions and approximations involved

+ No explicit use of chemical composition and form factors

+ No explicit use of space group symmetry

+ Pseudosymmetry does not hamper solution

+ High quality of solutions

+ Tolerant to noise

- Requires atomic resolution (d<1.1A for light atoms, d<1.5 for 
heavier atoms)

- Requires reasonably complete data

- Requires presence of the strongest reflections
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Charge flipping calculates density always in P1 → density is randomly 

shifted in the unit cell. Symmetry must be recovered in the resulting density.

Consequence: the space grup can be determined after the structure solution
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Symmetry determinationSymmetry determination

Symmetry operations compatible with the lattice and centering:

Symmetry operation             agreement factor

c(0,1,0):            x1          -x2       1/2+x3    0.035 

2_1(0,1,0):           -x1       1/2+x2          -x3    0.443

-1:           -x1          -x2          -x3    0.483

n(0,1,0):        1/2+x1          -x2       1/2+x3   97.026

a(0,1,0):        1/2+x1          -x2           x3   97.833

2(0,1,0):           -x1           x2          -x3  110.029

m(0,1,0):            x1          -x2           x3  114.562

-------------------------------------------------

Space group derived from the symmetry operations:

-------------------------------------------------

HM symbol:     P21/c

Hall symbol:   -p 2ybc

Fingerprint:   3300220n{03}23 (0,0,0)

Symmetry operations:
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2_1(0,1,0):           -x1       1/2+x2       1/2-x3

-1:           -x1          -x2          -x3
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Palatinus & van der Lee (2008), J. Appl. Cryst. 41

Charge flipping calculates density always in P1 → density is randomly shifted in 
the unit cell. Symmetry must be recovered in the resulting density.

Consequence: the space grup can be determined after the structure solution
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Superflip = charge FLIPping in SUPERspace

A freely available program for application of charge flipping in arbitrary dimension

Some properties:

� Keyword driven free-format input file

� Determination of the space group from the solution

� Includes essentially all “flavors” and recent developments of charge flipping

� Continuous development

� Interfaced from several crystallographic packages: Jana2006, WinGX, Crystals

� Applicable to solution of 2D, 3D and nD structures
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� Keyword driven free-format input file

� Determination of the space group from the solution

� Includes essentially all “flavors” and recent developments of charge flipping

� Continuous development

� Interfaced from several crystallographic packages: Jana2006, WinGX, Crystals

� Applicable to solution of 2D, 3D and nD structures

Palatinus & Chapuis (2007), J. Appl. Cryst. 40

http://superflip.fzu.cz



Charge flipping and precession electron 

diffraction
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No atoms are placed in the unit cell

No normalization is needed

No refinement performed
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} No modifications to the basic 

charge flipping formalism 

Applications of charge flipping:

• reconstruction of 2D projections from a single 

diffraction image of one zone axis

• phasing the structure factors for combined use with 

other techniques

• solution of 3D structure from 3D diffraction data
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2D structure projections2D structure projections
Advantages: 

� Getting PED pattern from one zone axis is relatively straightforward

� No scaling problems
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2D structure projections2D structure projections

Eggeman, White & Midgley, Acta Cryst. A65, 120-127Eggeman, White & Midgley, Acta Cryst. A65, 120-127

Calculated projected potential of 
Er2Ge2O7

p4gm, a=b=6.78A

Potential reconstructed by charge flipping 
from experimental data. 

thickness 55nm, prec. angle 42 mrad



2D structure projections2D structure projections

2D projections (and small 3D structures) have one common problem. The 

number of reflections is small, and the iteration minimum is very 

shallow: 

� Indicators of convergence do not work

� The solution is not always stable

� The solution is not perfect
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Solution from 3D diffraction dataSolution from 3D diffraction data
Advantage: Data easily obtained, scaling possible, lattice parameters „for 

free“, general approach

Disadvantage: zonal systematic absences less obvious, integration issues
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What to do after the solution?What to do after the solution?

Very often the PED data are not kinematical enough to 

provide full structural model, and difference Fourier maps 

do not help either.

Traditional difference Fourier map: 

use such that  
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obscalc FFF =∆+

obscalc IFFI =∆+ )(

)(1
FFT ∆=∆ −ρ

)(1
FFT ∆=∆ −ρ



What to do after the solution?What to do after the solution?

“Proof of principle“: two-beam calculation on zone 001 of 

Al2O3:

“Proof of principle“: two-beam calculation on zone 001 of 

Al2O3:



Thickness determinationThickness determination

Dynamical calculations require the 

crystal thickness to be known.

PED provides access to „CBED-

like“ properties of the 

reflections without actually 

performing the CBED 

experiment!
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ConclusionsConclusions

� Charge flipping does not strictly require the knowledge of 

chemical composition and symmetry

� Charge flipping is applicable also to 2D and 3D electron 

diffraction data

� 3D data sets obtained from manual or automatic tilt series 

are preferable for the structure solution step

� Steps beyond the pseudokinematical approximation are 

necessary for successful solution of complex structures
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EDMAEDMA

EDMA = Electron Density Map Analysis (part of the BayMEM suite)

Program for analysis of discrete electron density maps:

� Originally developed for the MEM densities

� Analysis of periodic and incommensurately modulated structures

� Location of atoms and tentative assignment of chemical type based on a qualitative 

composition

� Several interpretation modes depending on the degree of certainty about the 

composition

� Export of the structure in Jana2006, SHELX and CIF formats

� Writes out the modulation functions in a form of a x4-xi table 
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